W
£ %

2
§
S
N
N
N

N
N

A New Key Rank Estimation Method to Investigate
Dependent Key Lists of Side-Channel Attacks

Shuang Wang, Yang Li*, Jian Wang
li.yang@nuaa.edu.cn, li.yangheu@gmail.com
Nanjing University of Aeronautics and Astronautics, Nanjing, China
Oct. 20th, 2017 @ AsianHost 2017

Outline

e 1. Background
e Side-channel attacks, divide and conquer
* Key enumeration and key rank estimation

e 2. Motivation & Problems Setting
* Key recovery vs key difference recovery
* Dependent key list

* 3. Our Solution
* Basic idea
* Dependent-Key List Rank Estimation Algorithm (DK-REA)

* 4. Experimental Verification
e Setup & Results & Analysis

e 5. Conclusions and Future Work

Outline

e 1. Background
e Side-channel attacks, divide and conquer
* Key enumeration and key rank estimation

Side-channel attack and its evaluation

* Side-channel attack is powerful
* Power analysis, time analysis, electromagnetic analysis etc.
* Practical security threat to cryptographic devices

* SCA follows a divide-and-conquer approach
* Key is divided into sub-keys to be recovered independently

* When all sub-keys are successfully recovered, the whole key is
recovered as well

* Successful recovery means correct sub-key has “highest score”
among all key candidates
 Security evaluation of cryptographic implementations
e Data complexity (1k ~ 5M traces for key recovery)
e Computational complexity (Usually not very high)

How to define a successful attack

* Full-key recovery
* Each sub-key has the highest score
» Useful for practical attackers
* Focus of this paper

* Sub-key recovery
* Recover some sub-keys

» Useful for security evaluation
* Global Success Rate > 80% used in DPA contest v2

* Existence of sensitive leakage

» Detection of leakage of sensitive information
* T-test etc.

» Useful for strict security evaluation, countermeasure proposal

Trade-off between data and
computations

* |n full-key recovery, attackers can always use plaintext-ciphertext
test to verify the correctness of a key

N
< :
< Key candidate
N
Subkey l
~L Recovery plaintext result = ciphertext ?
| Result |— AES >
N~

 E.g, verify 29 most likely key candidates to find the correct key
* More computation to trade for less data complexity!

* How to enumerate the most likely keys from sub-key recovery
results?

* to minimize # of test trails.

 How to evaluate the rank of a certain key candidate?
* to quickly understand required # of test trails.

ey Enumeration A
Key Rank Estimatio

* Key Enumeration Algorithm

gorithm (

n Algorith

KEA) and

M (REA)

* Enumerate key candidates in decreasing order of likelihood

» Useful for practical attack

Sub-key

Key candidate with highest score

Recovery

Results KEA

* Key Rank Estimation Algorithm

* Estimate rank of a given key

e Useful for known-key evaluation
* Rank can beyond the KEA’s computational power

Sub-key

Akey + Recovery

—— Key REA
Results y

—

Key candidate with 2nd highest score

Estimated rank of this key

Existing Key RE Algorithms

* First rank estimation algorithm proposed in Eurocrypt 2013
* transfers search problem to a multidimensional problem
e 10 bits of accuracy

* In 2015, Bernstein et al. introduced two better RE algorithms
 First Alg. add post processing to increase accuracy from 10 bits to 5 bits

e Second Alg. ranks the keys based on polynomial problem, flexible
accuracy at the expense of run time.

* In 2015, Glowacz et al. proposed a rank estimation algorithm
* Based on convolution of histograms.
* Bounds with less than 1 bit of tightness within seconds of computation
e Scales to larger key sizes

* In 2015, Martin et al. mapped the rank estimation problem
* to a multi-dimensional knapsack problem

e All of them focused on merging independent key lists

Outline

e 2. Motivation & Problems Setting
* Key recovery vs key difference recovery
* Dependent key list

Motivation of this work

* Key is divided into sub-keys to be recovered independently

* But key can be divided in different formats, e.g. there are
two well-known types of SCAs

* Key Recovery Attacks:
* Target: ko, kq, ..., k15
* Based on leakage model from small component (e.g. S-box)

» Differential Power Analysis, Correlation Power Analysis, Mutual Information
Analysis, etc

* Key Difference Recovery Attack
i Target . k0,1 = ko @ kl' kO,ZI cee) k0115, kl,ZI . k1,15) weny k14,15

* Based on similarity of leakage from two small components

* Collision attacks, Correlation-Enhanced Collision Attacks

10

Can we combine these attack results?

Key-recovery attack Key-difference recovery attack
whole key whole key
kO kl k2 k15 ko@k1 kOGBkZ k1®k2 k14@k15
 |o0.01|]|0.02]]|0.40 0.02 0 0.12 0.45 | |0.22 0.22
' 1003|013 |]|o005 0.03 1 045 | loo1| [033 0.14
2 041] [0.11 []0.20 dij 031 2 011 | |0.03| |0.14 0.67
0.38 | [0.27 | | 0.07 0.33 3 0.01 022 | | 055 0.57
28-2]0.11 | |0.01 ||0.30 0.12 28 _) 0.34 0.45 | |0.33 0.33
28—-1]0.08 | |0.02]||0.01 0.04 28 _ 1 0.38 0.33 0.44 0.64

Combination of
dependent key lists

Motivation

* Why to do so?

* Intuitively, more score lists
should lead to better attack
result!

» Different attacks use
different information to
recover key

* Leakage model
* Collision model

* We want to

* Propose a key RE algorithm
for dependent key lists (DK-
REA),

e Verify whether using more
key lists is helpful

ko ky ks

0.13 | | 0.14 0.14
0.34 | |0.22 0.22
0.24 | |0.45 0.45
kO,l k0,2

0.34 0.62

0.27 0.43

0.15 0.71

k1,2

0.32

0.77

0.15

0.29

0.31

0.68

Ko,15

0.21

0.35

0.77

k1,15

0.33

0.15

0.36

12

Outline

* 3. Our Solution
* Basic idea
* Dependent-Key List Rank Estimation Algorithm (DK-REA)

Straightforward solution cannot work

e DK-KRA is not trivial due to dependency

* Many meaningless combinations don’t satisfy dependency
*Eg kog=0,ky =1,kogq = 2isinvalidsince ko D k; # kg4

* Actually, most of combinations are invalid consider 16 key bytes
and 15 key byte differences

 Straightforward combination is impracticable

* A new method to combine dependent key lists
* Deal with dependency before combination

14

Our Solution: divide and conquer

k
* Take kg, k1 and k1 as an ! ko1 K1t Kos

. 0.14 | T | 0.34 0.48
example, there is an XOR
. . — 0.22 | + | 0.27 | sy | 0.49
relationship between —>ko =0
themas kg @ k1 = ko1 045 | + | 0.15 0.60
* When a subkey i.e. kg is kg k, kot ky +kgq
fixed, there is a one-one 0.13 : ’
correspondence between 0'34 Sl g R a
: — 0.22 0.34 0.56
ky and ko ; Pho=1—" '
* We combine key lists of k4 0.24 0.45 | 4 | 0.23 0.67
and kg, to obtain a new : : : :
list as k{+kqy 1, which is I I 8
. e + k
independent from : + o ! ot
k k k 0.14 0.15 0.41
2,13, .., K15 ’ko — 255022 | + 023 | mmmp | 0.56

0.45 | 4 | 0.34 0.67

Our Solution: divide and conquer

* Key RE for dependent lists is reduced to 28=256 key RE
problems for independent key lists

Ko
0.13
0.34 kO —1
0.24
bk, = 255

ky

0.14

0.22

0.45

0.14

0.22

0.45

0.14

0.22

0.45

+
+

+

+ +

+

ko1

0.34

0.27

0.15

kO,l

0.27

0.34

0.23

k0,1

0.15

0.23

0.34

A 4

Combine
Key RE results

ky + ko4
0.48
) | 0.49 Key RE
. independently
0.60
kl + k0,1
0.41
) | 056 Key RE
.. independently
0.67
kl + kO,l
0.41
) | 0.56 Key RE
- independently
0.67

A

16

Our General Solution

* Fix 1 subkey k;, there is correspondence between k; and k; ;, j €
{0,1,...,15}.

* Fix 1 key byte allows to add up to 15 subkey-differece score lists

* Whenk; =m, m € {0,1, ..., 255}, we combine (kj;, k; ;) = s(k;) +
s(k; j=k;®m), s(k;) represents the score of k;

* ky, + kipandk, + k;, areindependent from each other as well

ko=0 ki+kor ke kqs ko=0 ki+ko1 kz+kop kis + ko 15
0.13 0.48 0.14 0.29 0.13 0.48 0.71 0.50
0.49 0.22 0.31 0.49 0.85 0.66
0.60 0.45 0.68 0.60 0.83 1.45

Adding 1 subkey-difference score list Adding 15 subkey-difference score lists,

Our General Solution

* If we want to add more than 15 dependent score lists, fix 1

subkey is not enough.

* We can fix 2 subkeys, such as k,, k1, and add up to 29 lists

* 15+14=29 lists
* There is a correspondence between kg, k; and ky; and k- ;.

k0=0

0.13

kl =0 kz + k0‘2+k1’2

0.14

1.03

1.62

0.98

kis + ko 15

0.83
0.81

1.81

k0=0

0.13

kl =0 kz + k0,2+k1’2

0.14

1.03

1.62

0.98

kis + ko1s + k115

0.83
0.81

1.81

Adding 16 subkey-difference score lists

Adding 29 subkey-difference score lists

18

Limitations of DK-REA

* Computational overhead
» Adding N subkey difference lists

* If 1<N<16, computational complexity is increased by a
factor of 2°

* If 15<N<30, computational complexity is increased by a
factor of 21°

* Added dependent score lists are fixed

* Dependent score lists that can be added cannot be freely
chosen

* Depends on the selected fixed subkey

* e.g., when we select k,, 15 dependent score lists that
can be added are kg 1, kg 2, kg 3,.., Ko 15 -

Outline

* 4. Experimental Verification
e Setup & Results & Analysis

Experimental Setup: simulated leakage

* Target: AES-128
e 16 S-boxes in first AES round
* Serial implementation
* Leakage model: Hamming weight of the S-box output with noise

e We simulated two attacks

* Correlation Power Analysis = key recovery
* Correlation Enhanced Collision Attack = key difference recovery

* Two types of noises in the leakage measurement
LeakageModel(a) = HW (a) + N (0, 42)

MesauredLeakage(a) = LeakageModel(a) + N (0,44)

Experimental Setup: REA with

independent score lists

* DK-REA uses a REA for independent score lists. All previous REA
algorithms can be used here.

* |In this paper, we use the key REA based on histograms for its simplicity
and efficiency.

Algorithm 2 Rank estimation algorithm based histograms [9]

Input: The score lists and the histograms H;
Output: An approximation of the rank of the correct key.
Initialization: H ., = H7;
Histograms convolution:
for : =2: N, do
chrr — ConU<chr-r: Hz),
end for
Rank estimation:

AN A A e

Np'Nbin _(Np_]-)
7: Estimated_rank ~ > Heyrr(7)
i=bins(k)

C. Glowacz, V. Grosso, R. Poussier, J. Schth, and F. X. Standaert, Simpler and More Efficient
Rank Estimation for Side-Channel Security Assessment. Springer Berlin Heidelberg, FSE 2015. 22

Experimental Setup: repetitions

* We performed

* 100 times experiments for adding O to 15 subkey-difference
score lists

* 10 times experiments for adding O to 29 subkey-difference
score lists.

* Taking into account the constraints of time and space, we do
not consider the key rank estimation using more than 29
subkey-difference score lists

DK-REA up to 15 lists (100+ traces)

0 [Number of t E—

35| Each curve represents the

30
|| of used dependent score |

evolution of key rank against #

* 180
i g 200

ists \’\\.————v—é
/ ¥

"When adding more h

score lists, the rank will

10{:'3‘ * * .
S . Wm general
O ¥
5f g @Ol 1}
0o 5 10 15
Number of dependent score lists

24

DK-REA up to 15 lists (<100 Traces)

Key rank(bits)

120

| —%— 30
110f 1| —— 40
M_{a—so
100 1 —© —60
/“""’M ~ % =70
| -+ -80
90 .
g 5 g—& G o 9 ””_ ™~
sof When adding more score
._ | lists, the rank does not
70 O —0--"0O0 ¥ 7T
¢ - ©0--0 -9 -C i
[e change in general y
60} R
50“&—*——4——-*——*——+”+”’+\“*’—+—+ﬁ+\\+~-+J/+\\._
40 ' '
0 5 10 15

Number of dependent score lists

25

DK-REA up to 29 lists

50 I — ™~
Best case: 246—>218 —
451 . 4| ——90
When adding more score | || —¢—100
40 . . O 110
lists, the rank decreases 5 120
35+ * 140
< | first and increases in end/ —o— 160

10 15 20 25
Number of dependent score lists

Outline

e 5. Conclusions and Future Work

Conclusions

* In this paper, we proposed DK-REA
* Able to estimate key rank for dependent score lists

* Generally the attack result is improved with more lists
* Key rank reduced from 24% to 218 in the best case

* Improvement also has limitations

* When data is not enough
* When too many dependent lists are added

e DK-REA is

* A new tool in SCA to explore the possibility of merging various
attack results for a more accurate security evaluation result

28

Future work

* More experiments to verify the effects of DK-KEA
e With practical power traces
e With different structures

* e.g. serial and parallel implementations

* With different leakage models

* e.g. two attacks with large difference in key recovery efficiency

* DK-KEA for more complex dependency relations
such as algebraic side-channel attack

* Reduce overhead!

* Rank Estimation Alg. 2 Key Enumeration Alg.
* Our work to be presented at CARDIS 2017 in this Nov.

Thanks very much for
your attentions!

Questions?
li.yang@nuaa.edu.cn
li.yangheu@gmail.com

