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Semiconductor supply chain: IC design flow

Global trends in IC design,

manufacturing, 

and distribution
→

emerging hardware

security problems ↑

M. Rostami et al, IEEE  Proc. Aug 2014 
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Hardware-based Threat in IC Supply Chain

M. Rostami et al, IEEE  Proc. Aug 2014 
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Hardware-based Threat in IC Supply Chain

M. Rostami et al, IEEE  Proc. Aug 2014 

PUF

PUF
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PUF: map a set of challenges to a set of responses based 

on an intractably complex physical system.

Application:
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PUF Implementations
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Oxide RRAM Basics

 “0” : High Resistance State (HRS)

 “1” : Low Resistance State (LRS)

 HRSLRS: SET 

 LRSHRS: RESET

Typical Bipolar I-V Curve
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RRAM’s Industry R&D 

Samsung HP & Hynix

Adesto

Panasonic Toshiba & Sandisk

Micron & SonyTSMC
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The Randomness in RRAM 

 A small change in defect location significantly

changes the resistance due to electron tunneling

mechanism in HRS
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RRAM Variability

RRAM device: TiN/TaOx/HfO2/TiN
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RRAM weak PUF Architecture

1. Each RRAM cell generates 

one response bit. 

2. CRP space is limited by 

RRAM capacity. 
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RRAM PUF Architecture for Authentication
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RRAM PUF Architecture for Authentication

 The red parts are designed

only for construction phase

(preparation phase)

 The green parts are designed

only for operation phase

(evaluation phase)
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Implementation Strategy for PUF
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Implementation Strategy for PUF
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Implementation Strategy for PUF
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Implementation Strategy for PUF
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3) Read out the current

4) Find a split reference within 

the read current distribution

5) Digitize the randomness 

according to the reference [1]

[1] W. Chen, et al, ICCAD, 2014
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PUF Performance Metrics

A. Chen et al, IEEE EDL Feb 2015 

Uniqueness means that the responses evaluated from

evaluating the same challenge on different PUF instances

should not be similar (Inter-Hamming Distance, ideally 50%).
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PUF Performance Metrics

A. Chen et al, IEEE EDL Feb 2015 

Uniqueness means that the responses evaluated from

evaluating the same challenge on different PUF instances

should not be similar (Inter-Hamming Distance, ideally 50%).

Uniformity is an indicator of the percentage of ‘1’ and ‘0’ in

the response vector (ideally 50%).
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PUF Performance Metrics
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the possible responses generated by the same PUF instance
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PUF Performance Metrics

A. Chen et al, IEEE EDL Feb 2015 

Uniqueness means that the responses evaluated from

evaluating the same challenge on different PUF instances

should not be similar (Inter-Hamming Distance, ideally 50%).

Uniformity is an indicator of the percentage of ‘1’ and ‘0’ in

the response vector (ideally 50%).

Diffuseness means the average hamming distances for all

the possible responses generated by the same PUF instance

for different challenges (ideally 50%).

Reliability is a metric to assess the similarity of the responses

resulting from evaluating the same challenge on the same

PUF instance under different circumstances, (Intra-

Hamming Distance, ideally 0%).
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Distribution of Read Current of 5 1kb RRAM Arrays

(b)

(a)

(b)

(a)

The probability density function (PDF) is used to

randomly generate the data pattern of the other 95 1 kb

arrays.
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Uniqueness
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Uniqueness
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 To achieve good uniqueness, RRAM outputs > 8 bits 

 The length of challenge vector shows negligible effect, 

which means the CRP space can be increased by 

increasing the length of challenge vector 
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Uniqueness

In practical, the attacker may try to obtain the secret bits 

from RRAM cells with brute-force computing. With more 

bits from RRAM array, 

e.g. if the RRAM outputs is 32-bit, it needs to compute ~1.4 

× 1011 times to reveal all the RRAM content for a 1kb RRAM.
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Uniformity and Diffuseness

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

Array size: 32 32 

Hamming Distance Between 100 Responses





 

 

O
c
c
u

re
n

c
e

Hamming Distance (%) 

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25




Array size: 32 32

Distribution of '1' among 100 Responses

 

 

O
c

c
u

re
n

c
e

Probability of '1' (%) 

(a)

(b)

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

Array size: 32 32 

Hamming Distance Between 100 Responses





 

 

O
c

c
u

re
n

c
e

Hamming Distance (%) 

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25




Array size: 32 32

Distribution of '1' among 100 Responses

 

 

O
c
c
u

re
n

c
e

Probability of '1' (%) 

(a)

(b)

Uniformity Diffuseness

Centered at ~50% with tight distribution



Arizona State University

Emerging Device and Architecture Group31 RUI LIU

Reproducibility or Reliability
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Reproducibility or Reliability
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Reproducibility or Reliability

25 30 35 40 45
10

2

10
4

10
6

10
8

10
10

10
12

72 days

Ea = 1.15 eV

 

 

 8 cells/bit

 1 cell/bit

R
e

te
n

ti
o

n
 T

im
e

 (
s

)

1/KT (1/eV)

10 years

65 C

(a)

(b)

(c)

(d)

WL

BL1 BL2 BLnSL2 SLn

BL

n cells/bit

SL1

100n 1µ 10µ 100µ

0

20

40

60

80

100

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

li
ty

 (
%

)

Read Current (A)

 Initial HRS

 HRS after 2 hours

 Initial LRS

 LRS after 2 hours

measured @ 150 C

Overlap(error)

1µ 10µ 100µ 1m

0

20

40

60

80

100

measured @ 150 C

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

li
ty

 (
%

)

Read Current (A)

 Initial HRS

 HRS after 55 hours

 Initial LRS

 LRS after 55 hours

2.5

8 cells/bit

0 1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

 

 

R
e
te

n
ti

o
n

 T
im

e
 (

x
 1

0
5
s
)

# of Redundant Cells for 1 Bit

measured @ 150 C



Arizona State University

Emerging Device and Architecture Group34 RUI LIU

Outline

 Introduction 

– Physical Unclonable Function

– RRAM

 RRAM PUF Architecture for Authentication

– RRAM strong PUF architecture

– Implementation strategy for PUF

 Performance Evaluation on 1kb RRAM arrays

– PUF Performance Metric

– Uniqueness, Uniformity, Diffuseness and Reproducibility

 Machine Learning Attack Evaluation

 Conclusion



Arizona State University

Emerging Device and Architecture Group35 RUI LIU

Machine Learning Attack
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Machine Learning Attack
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Machine Learning Attack 
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Conclusion

 Large variability of RRAM resistance in HRS was leveraged 

as a source of entropy for PUF application.

 RRAM array is embedded with SHA-256 to implement a 

strong PUF for device authentication.

 The performance and reliability of RRAM strong PUF were 

evaluated on the 1kb 1T1R arrays via simulation.

– To achieve good uniqueness and high security, more RRAM outputs 

should be feed into SHA engine.

– Redundant RRAM cell is employed to improve RRAM PUF’s 

reliability against resistance drifting over time.

 The proposed RRAM strong PUF demonstrated to be  

immune to machine learning attack. 
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Brief Comparison of Silicon PUFs

PUF Pros Cons Vulnerability

Delay based • Large # of CRPs

• Mature technology

Efforts for Place and Route Machine learning

attack

SRAM Mature technology Small # of CRPs Photon emission 

attack

STT-RAM

• Compact

• Low fabrication 

cost

• ~2x ON/OFF ratio

• Small variation in resistance

Invasive probing 

attack (possible 

but very hard)

PCRAM

Retention problem (aging effect)

Severity: PCRAM>RRAM
RRAM
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RRAM Array: 1-transistor-1-resistor (1T1R) vs. 
Cross-point Architecture

1T1R architecture Crossbar architecture

RRAM

HRSLRS

LRS LRS


