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Semiconductor supply chain: IC design flow
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Hardware-based Threat in IC Supply Chain
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Hardware-based Threat in IC Supply Chain
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Physical Unclonable Function (PUF)

PUF: map a set of challenges to a set of responses based
on an intractably complex physical system.

Challenge PUF Response

Application:

(a) Authentication (strong PUF) (b) Key Generation (weakPUF)
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PUF Implementations

J Complex physical systems (non-electronic or analog)
e Optical PUF: Complex interaction of light with scatter particles
 Coating PUF: Random capacitance of dielectric coating on IC
 Power distribution PUF: resistance variation in chip power-grid

d Digital IC PUFs (utilize manufacturing variability)
» Based on signal delay variability
- Arbiter PUF: signal delay difference determined by an arbiter
- Feed-forward arbiter PUF: add nonlinearity in arbiter PUF
- Ring oscillator PUF: variability in RO frequencies
Based on unstable states in cross-coupled gates
- SRAM PUF: startup state of SRAM during power-up
- Butterfly PUF: cross-coupled latches in “clear/preset”
- Latch PUF: cross-coupled NOR gates in “reset”
Flip-flop PUF: power-up behavior of flip-flops

J Nonvolatile Memory (NVM) PUFs (variability in manufacturing and mechanisms;
potentially reconfigurable)
» Phase change memory (PCM)
» Spin-transfer-torque random-access-memory (STTRAM)

» [Resistive random-access-memory (RRAM)




Oxide RRAM Basics Typical Bipolar I-V Curve
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RRAM'’s Industry R&D
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= A small change in defect location significantly
changes the resistance due to electron tunneling
mechanism in HRS
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RRAM Variability

RRAM device: TiN/TaOx/HfO,/TIN

Read Current (A)
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RRAM weak PUF Architecture
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RRAM PUF Architecture for Authentication
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1. Embed the RRAM array with
SHA engine to increase the

CRP space.
* RRAM array (entropy source)
= SHA engine (large CRP)

2. Challenge vector is split into
two segments.



RRAM PUF Architecture for Authentication

Challenge (N-bit)
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Implementatlon Strategy for PUF

1) form all the cells to LRS



Implementatlon Strategy for PUF
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Implementatlon Strategy for PUF
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Implementatlon Strategy for PUF
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Uniqueness means that the responses evaluated from
evaluating the same challenge on different PUF instances
should not be similar (Inter-Hamming Distance, ideally 50%).

A. Chen et al, IEEE EDL Feb 2015
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Uniqueness means that the responses evaluated from
evaluating the same challenge on different PUF instances
should not be similar (Inter-Hamming Distance, ideally 50%).

Uniformity is an indicator of the percentage of ‘1’ and ‘O’ in
the response vector (ideally 50%).

Diffuseness means the average hamming distances for all
the possible responses generated by the same PUF instance
for different challenges (ideally 50%).

Reliability Is a metric to assess the similarity of the responses
resulting from evaluating the same challenge on the same
PUF instance under different circumstances, (Intra-

Hamming Distance, ideally 0%).
A. Chen et al, IEEE EDL Feb 2015



Distribution of Read Current of 5 1kb RRAM Arrays
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The probability density function (PDF) is used to
randomly generate the data pattern of the other 95 1 kb
arrays.
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In practical, the attacker may try to obtain the secret bits
from RRAM cells with brute-force computing. With more
bits from RRAM array,

e.g. if the RRAM outputs is 32-bit, it needs to compute ~1.4
x 101! times to reveal all the RRAM content for a 1kb RRAM.



Uniformity and Diffuseness
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Reproducibility or Reliability

me:;sured @ 1:50 °C
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Reproducibility or Reliability
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Reproducibility or Reliability
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Machine Learning Attack

Neural Network Structure

(a) Input Hidden Hidden Output
layer layer 1 layer 2 layer

Challenge Response
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Neural Network Structure
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Neural Network Structure Predication Rate
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RRAM strong PUF offers a high resistance against the ML
attack due to the collision resistance of SHA .



Arizona State University

Outline

= Introduction

= Conclusion

38 RUI LIU Emerging Device and Architecture Group




= Large variability of RRAM resistance in HRS was leveraged
as a source of entropy for PUF application.

= RRAM array is embedded with SHA-256 to implement a
strong PUF for device authentication.

= The performance and reliability of RRAM strong PUF were
evaluated on the 1kb 1T1R arrays via simulation.

— To achieve good uniqueness and high security, more RRAM outputs
should be feed into SHA engine.

— Redundant RRAM cell is employed to improve RRAM PUF’s
reliability against resistance drifting over time.

* The proposed RRAM strong PUF demonstrated to be
Immune to machine learning attack.
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Brief Comparison of Silicon PUFs

RRAM

Severity: PCRAM>RRAM

PUF Pros Cons Vulnerability
Delay based  Large # of CRPs Efforts for Place and Route Machine learning
« Mature technology attack
SRAM Mature technology Small # of CRPs Photon emission
attack
STT-RAM « ~2x ON/OFF ratio
« Small variation in resistance
« Compact Invasive probing
PCRAM * Low fabrication attack (possible
cost Retention problem (aging effect) | but very hard)
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RRAM Array: 1-transistor-1-resistor (1T1R) vs.
Cross-point Architecture

1T1R architecture Crossbar architecture
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