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Cold boot attack

• J. Halderman et al, USENIX Security Symposium, August 2008

• Memory remanence effect -Data persists after power-off.

• Memory blocks are transferred to other machines to extract the 
encryption keys .

Fig.1 A typical cold boot attack[1]

[1] J.A. Halderman et al, “Lest we remember: cold boot attacks on encryption keys,” in USENIX Security Symposium, 2008, pp. 45–60



AsianHOST 2017

Memory decay

Fig.2 Visualizing memory decay[1]

Fig.3 Measuring decay for different test systems[1]

[1] J.A. Halderman et al, “Lest we remember: cold boot attacks on encryption keys,” in USENIX Security Symposium, 2008, pp. 45–60

Bit flip!
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Memory decay

• Cooling

• Error correction method 

Fig.2 Visualizing memory decay[1]

Fig.3 Measuring decay for different test systems[1]

[1] J.A. Halderman et al, “Lest we remember: cold boot attacks on encryption keys,” in USENIX Security Symposium, 2008, pp. 45–60
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Existing algorithms to recover RSA private keys(1/4)

N = pq,  e, d

dp = d mod (p-1) 
dq = d mod (q-1)

sk = (p, q, d, dp, dq)

ed = 1+k(p-1)(q-1)   
edp = 1+kp(p-1)    
edq = 1+kq(q-1)

slice(i) = (p[i], q[i], d[i+τ(k)], dp[i+τ(kp)], dq[i+τ(kq)])

p[i] +q[i]≡ (N-p’q’)[i] mod 2
d[i+τ(k)] +p[i] +q[i] ≡ (k(N+1)+1-k(p’+q’)-ed’)[i+τ(k)] mod 2
dp[i+τ(kp)] +p[i] ≡(kp(p’-1)-edp’)[i+τ(kp)] mod 2
dq[i+τ(kq)] +q[i] ≡(kq(q’-1)-edq’)[i+τ(kq)] mod 2

slice(i-1)…slice(0) slice(i)
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Existing algorithms to recover RSA private keys(2/4)

• Hensel lifting

p[i] +q[i]≡ c1

d[i+τ(k)] +p[i] +q[i] ≡ c2

dp[i+τ(kp)] +p[i] ≡ c3
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• Hensel lifting
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p[2] = 1
q[2] = 1-c1

d[τ(k)+2]=c2-c1

dp[τ(kp)+2]=c3-1 
dq[τ(kq)+2]=c4-q[ 

p[2] = 1
q[2] = 1-c1
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Existing algorithms to recover RSA private keys(3/4)

1 1

?
0 0

?

σ

σ

1-σ

1-σ

1 1

0 0

1 - δ

δ

1 - δ

δOriginal Extracted Original Extracted

HS algorithm[2] HMM algorithm[3]

A fraction σ(σ>0.27) of the extracted bits are 
known.

There exist a flipping probability δ(δ<0.237) for each 
bit.

[2] N. Heninger and H. Shacham, “Reconstructing RSA private keys from random key bits,” Advances in Cryptology-CRYPTO 2009. Springer Berlin Heidelberg, 2009, pp.1-17
[3] W. Henecka, A. May and A. Meurer, “Correcting errors in RSA private keys,” Advances in Cryptology–CRYPTO 2010. Springer Berlin Heidelberg, 2010, pp.351-369.
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Existing algorithms to recover RSA private keys(4/4)

Build candidates with Hensel lifting 

1 bit a time
Expansion

Remove the candidates that don’t 
match with known key bits

Pruning

HS algorithm HMM algorithm

Calculate the number of matching bits

Build candidates with Hensel lifting t bits a 
time

Calculate threshold C

Remove the candidates whose number of 
matching bits is less than the threshold C

If δ ≤ 0.5- γ- ε
t = [ln 2n /10 ε2]

γ = (ln2 (t+1)/10t)^0.5
C=5t(0.5+ γ)
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Our improvements based on HMM algorithm(2/4)

The Improved HMM Algorithm

Input: (N,e), erroneous sk, error probabilities α

and β

Output: the correct sk.

Initialization: Calculate (k, kp, kq) and slice(0)

For round = 1 to n/(2t)+1

Expansion:

Expand t times for every candidate with

slice(0)…slice(round-1)t using the Hensel

lifting, which generates 2t different partial

candidates gc1, gc2…… gc2t in slice((round-

1)t+1)… slice(round t).

Pruning:

For i = 1 to 2t

--Count the number of matching bit 0(1) Xi0(1) of

gci in slice((round-1)t+1)… slice(round t) with

the given erroneous sk.

--Compute the threshold Ci0(1) in the ith round.

If (Xi0 <= Ci0 or Xi1 <= Ci1) Discard the candidate.

Else Keep the candidate

end for

end for

Finalization:

Run trial decryption to determine the correct

private key.



AsianHOST 2017

Our improvements based on HMM algorithm(3/4)

• Notation

For any ε0 ε1>0, (N,e) as the n-bit modulus and public key. 

Given flipping probability α, β, η =min((1- α) ε1
2, ε0

2)

p1(0): the error probability of bit 1(0) in the extracted key

N0(1): the number of bit 0 (1) in each t slices of the extracted key

N0(1)’: the number of bit 0 (1) in each t slices of the candidate key

• Choice of parameters

We choose t, t0, t1 so that t = [ln 2n /5η]   t = 1+t0+t1
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Our improvements based on HMM algorithm(4/4)

• Performance analysis

γ1 = (ln2 (t1+1)/2N1)^0.5 γ0 = (ln2 (t0+1)/2N0’)^0.5    

C1=N1(0.5+ γ1)   C0=N0’(N0/5t+ γ0) 

If  p1≤ 0.5- γ1- ε1, β ≤ 1- N0’- γ0- ε0

The algorithm can output the correct sk in polynomial time O(n2+ln2/2.5η)

with success probability greater than 1-5η/2ln(2n)-1/n.

*success probability: The possibility that correct candidate isn’t pruned.
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Evaluation results(1/3)

• e = 216+1

• 0.05 ≤ α ≤ 0.4  β = 0.001, 0.01

• 100 different 1024-bit private keys 

• 100 repetitions for each private key
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Fig. 4 The success probability and runtime for 
different combinations of (t0,t1) when α = 0.25, β
= 0.001 and t = 11.
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Evaluation results(2/3)

Optimized t!

Fig. 5 Success probability and runtime of the improved HMM algorithm(a) and the original HMM algorithm(b)
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Evaluation results(3/3)

Fig. 5 Success probability and runtime of the improved HMM algorithm and the original HMM algorithm
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• α or β -> t   -> success probability
• α < 0.2
• α > 0.2
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Discussion

• C = C1’+C0’ =N0’ (0.5+γ)+ (5t-N0’)(0.5+γ)

• C1=N1(0.5+ γ1)       C0=N0’(N0/5t+ γ0) 

• α < 0.2   C1’≈ C1        C0’< C0

P(Xc0 + Xc1 > C0’ + C1’ )>P(Xc0 + Xc1 > C0 + C1 )

>P(Xc0 > C0∩ Xc1 >C1 )

• α > 0.2    C1’ > C1

P(Xc0 + Xc1 > C0’ + C1’ )<P(Xc0 > C0∩ Xc1 >C1 )
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Fig. 6 Estimated threshold paramters of 

the improved and original HMM algorithm 

for different error probabilities α when β = 0.001
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Conclusion

• A practical improvement of the cold boot attack based on HMM 
algorithm

-Real life settings

-Asymmetric pruning strategy

• Performance analysis
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Thank you!


