
PCH Framework for IP Runtime Security Verification

Xiaolong Guo*, Raj Gautam Dutta†, Jiaji Heᶧ, and Yier Jin*

*Department of Electrical and Computer Engineering, University of Florida

†Department of Electrical Engineering and Computer Science, University of Central Florida

ᶧSchool of Microelectronics, Tianjin University

guoxiaolong@ufl.edu, rajgautamdutta@knights.ucf.edu, dochejj@tju.edu.cn, yier.jin@ece.ufl.edu

Contents

• Introduction

– Threat Model

– Related Methods

– Background

• Runtime Proof-Carrying Hardware (PCH)

– Runtime PCH Framework

– Runtime Proof-Carrying

– Verifier Design

• Case Study and Results

• Conclusions and Future Work

Vulnerabilities of IC Supply Chain

• Current IC Supply Chain

Design Fab Interface Mask FabSpec

Wafer Probe Dice and Package Package Test Deploy and Monitor

Wafers

Trusted Untrusted Either

IPTools Std Cells Models

Vulnerabilities of IC Supply Chain

• Untrusted IP Vendor and Foundry

Design Fab Interface Mask FabSpec

Trusted

Integrator

Untrusted IP

Vendor and

Foundry

Consumer

Specs
Specs

IP Module, Fab Circuits

Trust Domain

IPTools Std Cells Models

Hardware Trojan Countermeasures

Countermeasures

for Hardware

Trojans

Trojan Detection

Design for Trust

Manufacturing

for Trust

Reverse Engineering

Functional Tests

Side-Channel Analysis

Formal Method

Runtime Monitoring

Obfuscation

Camouflage

Split manufacturing

• Existing countermeasures:

– Designed to provide protection in certain scenarios.

Formal Methods

Formal Verifications - PCH

• Static Formal Verification: Proof-Carrying Hardware (PCH)

– Only provides static verification in design stage

IP Vendors Side IP Consumers Side

Theorems

Generation

Circuit

in Coq

HDL

Codes

Proof

HDL to

Coq

HDL to

Coq

Checker

(Coq IDE)

PASS

Functional

Spec

Security

Prop

Circuit

in Coq

UNPASS

Formal Verifications – Verifiable ASICs

• Runtime Formal Verification: Verifiable ASICs

– Prover-Verifier architecture

– High computational cost and overhead; functional properties.

Verifier

Supplier

(foundry,

processor,

vendor, etc.)

Consumer

Integrator

Foundry

Prover

Trust Domain

ASIC

Verifier

Prover

Quarry

Answer

Specs
Specs

Backgrounds – Symbolic Execution

• Symbolic execution

– A program analysis technique

– Tools: KLEE, JPF, S2E, etc.

– Execution paths generated from program

– Properties check

Exe Path #1

Initial

End

Cons #1

Cons #2

Exe Path #2 Exe Path #3

int foo(int x){

int y = 0;

If (x == 0)

Return y;

if (x < 256){

y = 256/x;

} else {

y = 1;

}

return x;

}

Backgrounds – SAT Solver

• Satisfiability (SAT) solver

– Solve Boolean Satisfiability problem

• Input: conjunctive normal form (CNF)

• Output: SAT/UNSAT

– Tools: MiniSAT, ManySAT, March_dl, etc.

– Hardware accelerated SAT solver based on FPGA/GPU

– Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

SAT

Solver
SAT

UNSAT

Boolean Formulas SAT

Solver

Runtime PCH Framework

• Working procedure of runtime PCH framework

Fabricated Untrusted

Circuits (Prover)

Final System with

Runtime Verification

(System)

Trusted Circuits

(Verifier)

Security

Specs

Exe paths

info.

Golden Model

(Verilog Codes)

Trusted Integrator

Untrusted IP

Vendor and

Foundry

Consumer

Trusted Integrator

System := Prover /\ VerifierFunc := Seg 1 /\ Seg 2 /\.../\ Seg k

Prop := Lemma 1 /\ Lemma 2 /\.../\ Lemma k

Runtime PCH - Prover

• Runtime Proof-Carrying

SAT

Solver
SAT

UNSAT

Boolean Formula SAT

SolverExe Path #1

Initial

End

Cons #1

Cons #2

Exe Path #2 Exe Path #3
Circuit

Seg 3 CNF Seg 3

Seg n CNF seg n

Lemma n CNF la nLemma expr n

Tseitin

parse Tseitin

Proof

(CNF)

ሥ

𝒏=𝟏

𝒌

𝑺𝒆𝒈 𝒏

Func

Prover

ሥ

𝒏=𝟏

𝒌

𝑪𝑵𝑭𝒍𝒂𝒏/\𝐂𝐍𝐅𝒔𝒆𝒈𝒏

Runtime PCH - Verifier

• Design of Verifier

Seg #1 1

Seg #2 0

…… …

Seg #k 0

Seg n /\

𝑪𝑵𝑭𝒍𝒂𝒏/\𝑪𝑵𝑭𝒔𝒆𝒈𝒏

DPLL SAT Solver

Y

Req

Check

CNF

Updates

1/0

Case Study and Results

• Case study setup

– Platform: FPGA KC-705, Kintex 7

– Benchmark: RS232 – T100

– Hardware Trojan embedded

• Trigger signal: state,

bitCell_cntrH, recd_biCntrH,

rec_dataH

• Payload - DoS: output signals

rec_dataH and rec_readyH are

set to zeros.

Initial Assignments

(Contains Trojan)

Start Point

Always

#1

Always

#2

Always

#6

Always

#3

Always

#4

Always

#5

End Point

Case Study and Results

• Segment verification

– Prop (in natural language): in no way the output will keep generating zero regardless

of what input is.

Netlist File for Initial

Assignments

CNF Seg

Initial Assign

CNF la

DoS prop

Verilog Lemma

Expression

Proof

(CNF)
RS232

Verilog Codes

EDA Tool,

like ABC

TseitinSecurity

Specs

Exe paths

info.

Lock

Circuit

Normal

Operation

Parse

DPLL SAT Solver

in FPGA

15 msec

9 sec

Conclusion and Future Work

• Conclusion

– A solution to hardware runtime formal verification for secure purpose

– An attempt to apply symbolic execution in hardware security

• Future work

– Apply the approach into large scale hardware system

– SAT solver optimization

– Automated tool development

Questions?

Fabricated

Untrusted Circuits

(Prover)

Final System with

Runtime Verification

(System)

Trusted

Circuits

(Verifier)

Security

Specs

Exe

paths

info.

Golden Model

(Verilog Codes)

Trusted

Integrator

Untrusted IP

Vendor and

Foundry

Consumer

Trusted

Integrator

Seg #1 0

Seg #2 0

…… …

Seg #k 0

Seg n /\

𝑪𝑵𝑭𝒍𝒂𝒏/\𝑪𝑵𝑭𝒔𝒆𝒈𝒏

DPLL SAT Solver

Y

Req

Check

CNF

• Introduction

– Threat Model

– Related Methods

– Background

• Runtime Proof-Carrying Hardware (PCH)

– Runtime PCH Framework

– Runtime Proof-Carrying

– Verifier Design

• Case Study and Results

• Conclusions and Future Work

Thanks!

Xiaolong Guo, guoxiaolong@ufl.edu

