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Vulnerabillities of IC Supply Chain

e Current IC Supply Chain
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Vulnerabillities of IC Supply Chain

« Untrusted IP Vendor and Foundry
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Hardware Trojan Countermeasures

e EXIsting countermeasures:
— Designed to provide protection in certain scenarios.
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Formal Verifications - PCH

« Static Formal Verification: Proof-Carrying Hardware (PCH)
— Only provides static verification in design stage
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Formal Verifications — Verifiable ASICs

* Runtime Formal Verification: Verifiable ASICs
— Prover-Verifier architecture
— High computational cost and overhead; functional properties.
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Backgrounds — Symbolic Execution

« Symbolic execution
— A program analysis technique
— Tools: KLEE, JPF, S2E, etc.
— Execution paths generated from program
— Properties check

!
int foo(int x){ @

1
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inty =0;
If (x ==0)
Return vy,

if (x < 256){ — BN .
y = 256/x; l ‘

} else { . Exe Path #2 Exe Path #3
: y ; | |
return x:




Backgrounds — SAT Solver

« Satisfiability (SAT) solver
— Solve Boolean Satisfiability problem
* Input: conjunctive normal form (CNF)
e Output: SAT/UNSAT
— Tools: MIiniISAT, ManySAT, March_dl, etc.
— Hardware accelerated SAT solver based on FPGA/GPU
— Davis-Putnam-Logemann-Loveland (DPLL) Algorithm
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Runtime PCH Framework

* Working procedure of runtime PCH framework
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Runtime PCH - Prover

* Runtime Proof-Carrying
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Runtime PCH - Verifier

* Design of Verifier
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Case Study and Results

e Case study setup
— Platform: FPGA KC-705, Kintex 7
— Benchmark: RS232 — T100
— Hardware Trojan embedded

« Trigger signal: state,
bitCell _cntrH, recd_biCntrH,
rec_dataH

» Payload - DoS: output signals
rec_dataH and rec_readyH are
set to zeros.
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Case Study and Results

e Segment verification

— Prop (in natural language): in no way the output will keep generating zero regardless
of what input is.

Normal

Operation 15 msec

Exe paths Netlist File for Initial CNF Seg
info. _ ->
Assignments =0/ LeYo] B nitial Assign
T like ABC 1
- Proof DPLL SAT Solver
RS232 —
Verilog Codes (CNF) in FPGA

Security |UEECl  Verilog Lemma el CNF la ‘_
Specs —>
Expression DoS prop

9 sec




Conclusion and Future Work

e Conclusion
— A solution to hardware runtime formal verification for secure purpose
— An attempt to apply symbolic execution in hardware security

* Future work
— Apply the approach into large scale hardware system
— SAT solver optimization
— Automated tool development
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Thanks!

Xiaolong Guo, guoxiaolong@ufl.edu
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