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Vulnerabilities of IC Supply Chain

• Current IC Supply Chain
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Vulnerabilities of IC Supply Chain

• Untrusted IP Vendor and Foundry
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Hardware Trojan Countermeasures
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• Existing countermeasures: 

– Designed to provide protection in certain scenarios.

Formal Methods



Formal Verifications - PCH

• Static Formal Verification: Proof-Carrying Hardware (PCH)

– Only provides static verification in design stage
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Formal Verifications – Verifiable ASICs

• Runtime Formal Verification: Verifiable ASICs

– Prover-Verifier architecture

– High computational cost and overhead; functional properties.
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Backgrounds – Symbolic Execution

• Symbolic execution

– A program analysis technique

– Tools: KLEE, JPF, S2E, etc. 

– Execution paths generated from program

– Properties check

Exe Path #1

Initial

End

Cons #1

Cons #2
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int foo(int x){

int y = 0;

If (x == 0)

Return y;

if (x < 256){

y = 256/x;

} else {

y = 1;

}

return x;

}



Backgrounds – SAT Solver

• Satisfiability (SAT) solver

– Solve Boolean Satisfiability problem 

• Input: conjunctive normal form (CNF)

• Output: SAT/UNSAT

– Tools: MiniSAT, ManySAT, March_dl, etc.

– Hardware accelerated SAT solver based on FPGA/GPU

– Davis-Putnam-Logemann-Loveland (DPLL) Algorithm
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Runtime PCH Framework

• Working procedure of runtime PCH framework
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Runtime PCH - Prover

• Runtime Proof-Carrying

SAT 

Solver
SAT

UNSAT

Boolean Formula SAT 

SolverExe Path #1

Initial

End

Cons #1

Cons #2

Exe Path #2 Exe Path #3
Circuit 

Seg 3 CNF Seg 3

Seg n CNF seg n

Lemma n CNF la nLemma expr n

Tseitin

parse Tseitin

Proof 

(CNF)

ሥ

𝒏=𝟏

𝒌

𝑺𝒆𝒈 𝒏

Func

Prover

ሥ

𝒏=𝟏

𝒌

𝑪𝑵𝑭𝒍𝒂𝒏/\𝐂𝐍𝐅𝒔𝒆𝒈𝒏



Runtime PCH - Verifier

• Design of Verifier
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Case Study and Results

• Case study setup

– Platform: FPGA KC-705, Kintex 7

– Benchmark: RS232 – T100

– Hardware Trojan embedded

• Trigger signal: state, 

bitCell_cntrH, recd_biCntrH, 

rec_dataH

• Payload - DoS: output signals 

rec_dataH and rec_readyH are 

set to zeros.
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Case Study and Results

• Segment verification

– Prop (in natural language): in no way the output will keep generating zero regardless 

of what input is.
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Conclusion and Future Work

• Conclusion

– A solution to hardware runtime formal verification for secure purpose

– An attempt to apply symbolic execution in hardware security

• Future work

– Apply the approach into large scale hardware system

– SAT solver optimization

– Automated tool development



Questions?
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