
A	New	Key	Rank	Estimation	Method	to	Investigate	
Dependent	Key	Lists	of	Side-Channel	Attacks

Shuang Wang,	Yang	Li*,	Jian	Wang
li.yang@nuaa.edu.cn,	li.yangheu@gmail.com

Nanjing	University	of	Aeronautics	and	Astronautics,	Nanjing,	China
Oct.	20th,	2017	@	AsianHost	2017

Outline
• 1.	Background
• Side-channel	attacks,	divide	and	conquer	
• Key	enumeration	and	key	rank	estimation	

• 2.	Motivation	&	Problems	Setting
• Key	recovery	vs	key	difference	recovery
• Dependent	key	list	

• 3.	Our	Solution
• Basic	idea
• Dependent-Key	List	Rank	Estimation	Algorithm	(DK-REA)	

• 4.	Experimental	Verification
• Setup	&	Results	&	Analysis

• 5.	Conclusions	and	Future	Work
2

Outline
• 1.	Background
• Side-channel	attacks,	divide	and	conquer	
• Key	enumeration	and	key	rank	estimation	

• 2.	Motivation	&	Problems	Setting
• Key	recovery	vs	key	difference	recovery
• Dependent	key	list	

• 3.	Our	Solution
• Basic	idea
• Dependent-Key	List	Rank	Estimation	Algorithm	(DK-REA)	

• 4.	Experimental	Verification
• Setup	&	Results	&	Analysis

• 5.	Conclusions	and	Future	Work
3

Side-channel	attack	and	its	evaluation
• Side-channel	attack	is	powerful
• Power	analysis,	time	analysis,	electromagnetic	analysis	etc.
• Practical	security	threat	to	cryptographic	devices

• SCA	follows	a	divide-and-conquer	approach
• Key	is	divided	into	sub-keys	to	be	recovered	independently
• When	all	sub-keys	are	successfully	recovered,		the	whole	key	is	
recovered	as	well	
• Successful	recovery	means	correct	sub-key	has	“highest	score”	
among	all	key	candidates	

• Security	evaluation	of	cryptographic	implementations
• Data	complexity	(1k	~ 5M	traces	for	key	recovery)
• Computational	complexity	(Usually	not	very	high)

4

How	to	define	a	successful	attack
• Full-key	recovery	
• Each	sub-key	has	the	highest	score	
• Useful	for	practical	attackers
• Focus	of	this	paper

• Sub-key	recovery
• Recover	some	sub-keys
• Useful	for	security	evaluation	

• Global	Success	Rate	>	80%	used	in	DPA	contest	v2

• Existence	of	sensitive	leakage
• Detection	of	leakage	of	sensitive	information

• T-test	etc.
• Useful	for	strict	security	evaluation,	countermeasure	proposal	

5

Trade-off	between	data	and	
computations
• In	full-key	recovery,	attackers	can	always	use	plaintext-ciphertext
test to	verify	the	correctness	of	a	key

• E.g,	verify	240 most	likely	key	candidates	to	find	the	correct	key
• More	computation	to	trade	for	less	data	complexity!

• How	to	enumerate	the	most	likely	keys	from	sub-key	recovery	
results?	
• to	minimize	# of	test	trails.

• How	to	evaluate	the	rank	of	a	certain	key	candidate?	
• to	quickly	understand	required #	of	test	trails. 6

Subkey
Recovery	
Result

...
…...
…
Subkey
Recovery	
Result

Key	candidate

AES
plaintext result = ciphertext ?

Key	Enumeration	Algorithm	(KEA)	and	
Key	Rank	Estimation	Algorithm	(REA)
• Key	Enumeration	Algorithm
• Enumerate	key	candidates	in	decreasing	order	of	likelihood
• Useful	for	practical	attack

• Key	Rank	Estimation	Algorithm
• Estimate	rank	of	a	given	key
• Useful	for	known-key	evaluation	

• Rank	can	beyond	the	KEA’s	computational	power

7

KEA

Sub-key	
Recovery	
Results

Key	candidate	with	highest	score
Key	candidate		with	2nd highest	score
… ….

Key	REA

Sub-key	
Recovery	
Results

Estimated	rank	of	this	keyA key	+	

Existing	Key	RE	Algorithms
• First	rank	estimation	algorithm	proposed	in	Eurocrypt 2013

• transfers	search	problem	to	a	multidimensional	problem
• 10	bits	of	accuracy

• In	2015,	Bernstein	et	al.	introduced	two	better	RE	algorithms
• First	Alg.	add	post	processing	to	increase	accuracy	from	10	bits	to	5	bits	
• Second	Alg.	ranks	the	keys	based	on	polynomial	problem,	flexible	
accuracy	at	the	expense	of	run	time.	

• In	2015,	Glowacz et	al.	 proposed	a	rank	estimation	algorithm	
• Based	on	convolution	of	histograms.	
• Bounds	with	less	than	1	bit	of	tightness	within	seconds	of	computation
• Scales	to	larger	key	sizes

• In	2015,	Martin	et	al.	mapped	the	rank	estimation	problem	
• to	a	multi-dimensional	knapsack	problem

• All	of	them	focused	on	merging	independent	key	lists
8

Outline
• 1.	Background
• Side-channel	attacks,	divide	and	conquer	
• Key	enumeration	and	key	rank	estimation	

• 2.	Motivation	&	Problems	Setting
• Key	recovery	vs	key	difference	recovery
• Dependent	key	list	

• 3.	Our	Solution:	
• Ideas
• Dependent-Key	List	Rank	Estimation	Algorithm	(DK-REA)	

• 4.Experimental	Verification
• Setup	&	Results	&	Analysis

• 5.	Conclusions	and	Future	Work
9

Motivation	of	this	work
• Key	is	divided	into	sub-keys	to	be	recovered	independently	
• But	key	can	be	divided	in	different	formats,	e.g.	there	are	
two	well-known	types	of	SCAs
• Key	Recovery	Attacks:

• Target:	𝑘", 𝑘$, … , 𝑘$&
• Based	on	leakage	model	from	small	component	(e.g.	S-box)
• Differential	Power	Analysis,	Correlation	Power	Analysis,	Mutual	Information	
Analysis,	etc

• Key Difference	Recovery	Attack
• Target	:	𝑘",$ = 𝑘" ⊕ 𝑘$, 𝑘",), … , 𝑘",$&, 𝑘$,),… , 𝑘$,$& , … , 𝑘$*,$&
• Based	on	similarity	of	leakage	from	two	small	components	
• Collision	attacks,	Correlation-Enhanced	Collision	Attacks		

10

Key-recovery	attack Key-difference	recovery	attack

𝑘" 𝑘$ 𝑘$&𝑘) 𝑘"⨁𝑘$ 𝑘"⨁𝑘) 𝑘$⨁𝑘) 𝑘$*⨁𝑘$&

whole key

0.01

0.03

0.41

0.38

…

0.11

0.08

0.02

0.13

0.11

0.27

…

0.01

0.02

0.40

0.05

0.20

0.07

…

0.30

0.01

0.02

0.03

0.31

0.33

…

0.12

0.04

0.12

0.45

0.11

0.01

…

0.34

0.38

0.45

0.01

0.03

0.22

…

0.45

0.33

0.22

0.33

0.14

0.55

…

0.33

0.44

0.22

0.14

0.67

0.57

…

0.33

0.64

0

1

2

3

…

2- − 2
2- − 1

0

1

2

3
…

2- − 2
2- − 1

𝑑1,2 𝑑1,2

whole key

Can	we	combine	these	attack	results?

Combination of
dependent key lists

Motivation	
• Why	to	do	so?
• Intuitively,	more	score	lists	
should	lead	to	better	attack	
result!
• Different	attacks	use	
different	information	to	
recover	key
• Leakage	model
• Collision	model	

• We	want	to	
• Propose	a	key	RE	algorithm	
for	dependent	key	lists	(DK-
REA),
• Verify	whether	using	more	
key	lists	is	helpful

12

Outline
• 1.	Background
• Side-channel	attacks,	divide	and	conquer	
• Key	enumeration	and	key	rank	estimation	

• 2.	Motivation	&	Problems	Setting
• Key	recovery	vs	key	difference	recovery
• Dependent	key	list	

• 3.	Our	Solution
• Basic	idea
• Dependent-Key	List	Rank	Estimation	Algorithm	(DK-REA)	

• 4.	Experimental	Verification
• Setup	&	Results	&	Analysis

• 5.	Conclusions	and	Future	Work
13

Straightforward	solution	cannot	work
• DK-KRA	is	not	trivial	due	to	dependency	
• Many	meaningless	combinations	don’t	satisfy	dependency	
• E.g.	𝑘" = 0, 𝑘$ = 1, 𝑘",$ = 2	is	invalid	since	𝑘0 ⊕ 𝑘1 ≠ 𝑘",$ 	
• Actually,	most	of	combinations	are	invalid	consider	16	key	bytes	
and	15	key	byte	differences	
• Straightforward	combination	is	impracticable

• A	new	method	to	combine	dependent	key	lists	
• Deal	with	dependency	before	combination

14

Our	Solution:	divide	and	conquer
• Take	𝑘", 𝑘$ and	𝑘",$	as	an	
example,	there	is	an	XOR	
relationship	between	
them	as	𝑘" ⊕ 𝑘$ = 𝑘",$	
• When	a	subkey i.e.	𝑘" is	
fixed,	there	is	a	one-one	
correspondence	between	
𝑘$ and	𝑘",$	
• We	combine	key	lists	of	𝑘$
and	𝑘",$		to	obtain	a	new	
list	as	𝑘$+𝑘",$,	which	is	
independent	from	
𝑘), 𝑘6, … , k$&

15

0.13
0.34

…
0.24

!"

!" = 0
0.14
0.22

…
0.45

!%
0.34
0.27

…
0.15

!",%
0.48
0.49

…
0.60

!% + !",%
+
+

+
…

!" = 1
0.14
0.22

…
0.45

!%
0.27
0.34

…
0.23

!",%
0.41
0.56

…
0.67

!% + !",%
+
+

+
…

…

!" = 255
0.14
0.22

…
0.45

!%
0.15
0.23

…
0.34

!",%
0.41
0.56

…
0.67

!% + !",%
+
+

+
…

… … …

Our	Solution:	divide	and	conquer
• Key	RE	for	dependent	lists	is	reduced	to	28=256	key	RE	
problems	for	independent	key	lists

16

0.13
0.34

…
0.24

!"

!" = 0
0.14
0.22

…
0.45

!%
0.34
0.27

…
0.15

!",%
0.48
0.49

…
0.60

!% + !",%
+
+

+
…

!" = 1
0.14
0.22

…
0.45

!%
0.27
0.34

…
0.23

!",%
0.41
0.56

…
0.67

!% + !",%
+
+

+
…

…

!" = 255
0.14
0.22

…
0.45

!%
0.15
0.23

…
0.34

!",%
0.41
0.56

…
0.67

!% + !",%
+
+

+
…

… … …
Combine	

Key	RE	results

Key	RE	
independently

Key	RE	
independently	

Key	RE	
independently

…

Adding	1	subkey-difference	score	list Adding	15	subkey-difference	score	lists

Our	General	Solution
• Fix	1	subkey 𝑘1,	there	is	correspondence	between	𝑘2 and	𝑘1,2, 𝑗 ∈
{0,1, … , 15}.	
• Fix	1	key	byte	allows	to	add	up	to	15	subkey-differece score	lists
• When	𝑘1 = 𝑚, 𝑚 ∈ 0,1, … , 255 , we	combine	(𝑘2, 𝑘1,2) = 𝑠(𝑘2) +
𝑠(𝑘1,2=𝑘2⨁𝑚),	𝑠(𝑘2) represents	the	score	of	𝑘2
• 𝑘B + 𝑘1,B and	𝑘C + 𝑘1,C are	independent	from	each	other	as	well

17

Adding	16	subkey-difference	score	lists Adding	29	subkey-difference	score	lists

Our	General	Solution
• If	we	want	to	add	more	than	15	dependent	score	lists,	fix	1	
subkey is	not	enough.	
• We	can	fix	2	subkeys,	such	as	𝑘", 𝑘$,	and	add	up	to	29	lists
• 15+14=29	lists
• There	is	a	correspondence	between	𝑘", 𝑘1 and	𝑘",1 and	𝑘$,1.

18

Limitations	of	DK-REA

• Computational	overhead	
• Adding	N	subkey difference	lists
• If	1<N<16,	computational	complexity	is	increased	by	a	
factor	of	2-
• If	15<N<30,	computational	complexity	is	increased	by	a	
factor	of	2$D

• Added	dependent	score	lists	are	fixed
• Dependent	score	lists	that	can	be	added	cannot	be	freely	
chosen
• Depends	on	the	selected	fixed	subkey
• e.g.,	when	we	select	𝑘",	15	dependent	score	lists	that	
can	be	added	are	𝑘",$, 𝑘",),	𝑘",6,…, 𝑘",$& .

19

Outline
• 1.	Background
• Side-channel	attacks,	divide	and	conquer	
• Key	enumeration	and	key	rank	estimation	

• 2.	Motivation	&	Problems	Setting
• Key	recovery	vs	key	difference	recovery
• Dependent	key	list	

• 3.	Our	Solution
• Basic	idea
• Dependent-Key	List	Rank	Estimation	Algorithm	(DK-REA)	

• 4.	Experimental	Verification
• Setup	&	Results	&	Analysis

• 5.	Conclusions	and	Future	Work
20

Experimental	Setup:	simulated	leakage
• Target:	AES-128
• 16	S-boxes	in	first	AES	round
• Serial	implementation	
• Leakage	model:	Hamming	weight	of	the	S-box	output with	noise	

• We	simulated	two	attacks	
• Correlation	Power	Analysis	à key	recovery	
• Correlation	Enhanced	Collision	Attack	à key	difference	recovery

• Two	types	of	noises	in	the	leakage	measurement

21

𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑀𝑜𝑑𝑒𝑙 𝛼 = 𝐻𝑊 𝛼 +𝒩(0, 4))

𝑀𝑒𝑠𝑎𝑢𝑟𝑒𝑑𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝛼 = 𝐿𝑒𝑎𝑘𝑎𝑔𝑒𝑀𝑜𝑑𝑒𝑙 𝛼 +𝒩(0, 4))

Experimental	Setup:	REA	with
independent score lists
• DK-REA	uses	a	REA	for	independent	score	lists.	All	previous	REA	
algorithms	can	be	used	here.
• In	this	paper,	we	use	the	key	REA	based	on	histograms	for	its	simplicity	
and	efficiency.

22

C.	Glowacz,	V.	Grosso,	R.	Poussier,	J.	Schth,	and	F.	X.	Standaert,	Simpler	and	More	Efficient	
Rank	Estimation	for	Side-Channel	Security	Assessment.	Springer	Berlin	Heidelberg,	FSE	2015.	

Experimental	Setup:	repetitions
• We	performed	
• 100	times	experiments	for	adding	0	to	15	subkey-difference	
score	lists	
• 10	times	experiments	for	adding	0	to	29	subkey-difference	
score	lists.	
• Taking	into	account	the	constraints	of	time	and	space,	we	do	
not	consider	the	key	rank	estimation	using	more	than	29	
subkey-difference	score	lists

23

DK-REA	up	to	15	lists	(100+	traces)

24

When	adding	more	
score	lists,	the	rank	will	
decrease	in	general

Number	of	
Power	traces

Each	curve	represents	the	
evolution	of	key	rank	against	#
of	used	dependent	score	lists

DK-REA	up	to	15	lists	(<100	Traces)

25

When	adding	more	score	
lists,	the	rank	does	not	
change	in	general

DK-REA	up	to	29	lists

26

Best	case:	246à218
When	adding	more	score	
lists,	the	rank	decreases	
first	and	increases	in	end

Outline
• 1.	Background
• Side-channel	attacks,	divide	and	conquer	
• Key	enumeration	and	key	rank	estimation	

• 2.	Motivation	&	Problems	Setting
• Key	recovery	vs	key	difference	recovery
• Dependent	key	list	

• 3.	Our	Solution
• Basic	idea
• Dependent-Key	List	Rank	Estimation	Algorithm	(DK-REA)	

• 4.	Experimental	Verification
• Setup	&	Results	&	Analysis

• 5.	Conclusions	and	Future	Work
27

Conclusions	

• In	this	paper,	we	proposed	DK-REA
• Able	to	estimate	key	rank	for	dependent	score	lists
• Generally	the	attack	result	is	improved	with	more	lists

• Key	rank	reduced	from	246 to	218 in	the	best	case

• Improvement	also	has	limitations
• When	data	is	not	enough	
• When	too	many	dependent	lists	are	added

• DK-REA	is
• A	new	tool	in	SCA	to	explore	the	possibility	of	merging	various	
attack	results	for	a	more	accurate	security	evaluation	result

28

Future	work

•More	experiments	to	verify	the	effects	of	DK-KEA
• With	practical	power	traces
• With	different	structures	

• e.g.	serial	and	parallel	implementations

• With	different	leakage	models
• e.g.	two	attacks	with	large	difference	in	key	recovery	efficiency	

• DK-KEA	for	more	complex	dependency	relations	
such	as	algebraic	side-channel	attack
• Reduce	overhead!
• Rank	Estimation	Alg.	à Key	Enumeration	Alg.	
• Our	work	to	be	presented	at	CARDIS	2017	in	this	Nov.	

29

Thanks	very	much	for	
your	attentions!

Questions?
li.yang@nuaa.edu.cn
li.yangheu@gmail.com

30

