PCH Framework for IP Runtime Security Verification

Xiaolong Guo*, Raj Gautam Duttat, Jiaji He', and Yier Jin*

*Department of Electrical and Computer Engineering, University of Florida
tDepartment of Electrical Engineering and Computer Science, University of Central Florida
1School of Microelectronics, Tianjin University
guoxiaolong@ufl.edu, rajgautamdutta@knights.ucf.edu, dochejj@tju.edu.cn, yier.jin@ece.ufl.edu

- - . ¥ . ¥ |
FfEagapg 3
P’l QL9 B
™ H1 N
o Y @ Y

Contents

Introduction

— Threat Model

— Related Methods
— Background

Runtime Proof-Carrying Hardware (PCH)
— Runtime PCH Framework

— Runtime Proof-Carrying

— Verifier Design

Case Study and Results

Conclusions and Future Work

Vulnerabillities of IC Supply Chain

e Current IC Supply Chain

= = mm

l Wafers

Wafer Probe 4 Dice and Package Emmmeemd Package Test [mmmemmd Deploy and Monitor

Tools

Trusted Untrusted Either

Vulnerabillities of IC Supply Chain

« Untrusted IP Vendor and Foundry

Tools

|

|

|

|

|

|

|

Specs i

|

—)p I
I <

|

|

|

|

|

|

|

|

Trust Domain
Specs

IP Module, Fab Circuits yntrusted IP
Consumer Trusted Vendor and
Integrator
S A— J Foundry

Hardware Trojan Countermeasures

e EXIsting countermeasures:
— Designed to provide protection in certain scenarios.

4 Trojan Detection 4 Reverse Engineering

~—
Functional Tests

Side-Channel Analysis
Countermeasures

for Hardware 4 Design for Trust -> Formal Methods

Trojans

Runtime Monitoring

Obfuscation

Camouflage

Manufacturing

amdll Split manufacturing
for Trust

Formal Verifications - PCH

« Static Formal Verification: Proof-Carrying Hardware (PCH)
— Only provides static verification in design stage

Functional
Spec

Security . Theorems
Prop Generation

IP Vendors Side

HDL
Codes

HDL to
>

|

. Checker
(Coq IDE)

—p PASS

IP Consumers Side

—p UNPASS

Formal Verifications — Verifiable ASICs

* Runtime Formal Verification: Verifiable ASICs
— Prover-Verifier architecture
— High computational cost and overhead; functional properties.

Trust Domain

Specs

Supplier
(foundry,
processor,

vendor, etc.) Verifier

ASIC
Quarry
>
Answer

Backgrounds — Symbolic Execution

« Symbolic execution
— A program analysis technique
— Tools: KLEE, JPF, S2E, etc.
— Execution paths generated from program
— Properties check

!
int foo(int x){ @

1
<D

inty =0;
If (x ==0)
Return vy,

if (x < 256){ — BN .
y = 256/x; l ‘

} else { . Exe Path #2 Exe Path #3
: y ; | |
return x:

Backgrounds — SAT Solver

« Satisfiability (SAT) solver
— Solve Boolean Satisfiability problem
* Input: conjunctive normal form (CNF)
e Output: SAT/UNSAT
— Tools: MIiniISAT, ManySAT, March_dl, etc.
— Hardware accelerated SAT solver based on FPGA/GPU
— Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

SGUELRLTISE

= "%3?
EF Solver

.ﬁ

Boolean Formula !SAT

UNSAT

Runtime PCH Framework

* Working procedure of runtime PCH framework

Untrusted IP
Vendor and
Foundry

i
i
i
i
| |
I
§
§
§
§
§
§
!

Exe paths Security [

info. Specs :

§
§
§
§
§
§
§
§
§
§
| |
§
§
§
§
§
i

1

Final System with

Golden Model

(Verilog Codes) *untime Verification

' Q"

rusted Integrator 1

Trusted Circuits
- -
(Verifier)

Func :=Seg 1\ Seg 2 \...\ Seg k System := Prover A\ Verifier
Prop :=Lemma 1 /A Lemma 2 A...\ Lemma k

Consumer

|
I !
1 |
! I
|
! .
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
- :
|
1 |
| L (System) i
- :
|
I !
1 |
1 |
1 |
1 |
' I
|
I !
1 |
- :
| !

Runtime PCH - Prover

* Runtime Proof-Carrying

k

p!‘F! Tseitin - CNF,,. /\CNF

Lemman H » Lemma expr n > CNFlan /\1 o e
l Boolea
Segn

Exe Path #1
Exe Path #2

— Prover

Runtime PCH - Verifier

* Design of Verifier

Seg #1 1
Check Seg #2 0 Y Seg n /\
______ = CNFlan/\CNFsegn
Seg #k 0
[Req CNF

\4

ﬁ

#

.

1/0

g DPLL SAT Solver |jms

Updates

Case Study and Results

e Case study setup
— Platform: FPGA KC-705, Kintex 7
— Benchmark: RS232 — T100
— Hardware Trojan embedded

« Trigger signal: state,
bitCell _cntrH, recd_biCntrH,
rec_dataH

» Payload - DoS: output signals
rec_dataH and rec_readyH are
set to zeros.

Initial Assignments

(Contains Trojan)

Case Study and Results

e Segment verification

— Prop (in natural language): in no way the output will keep generating zero regardless
of what input is.

Normal

Operation 15 msec

Exe paths Netlist File for Initial CNF Seg
info. _ ->
Assignments =0/ LeYo] B nitial Assign
T like ABC 1
- Proof DPLL SAT Solver
RS232 —
Verilog Codes (CNF) in FPGA

Security |UEECl Verilog Lemma el CNF la ‘_
Specs —>
Expression DoS prop

9 sec

Conclusion and Future Work

e Conclusion
— A solution to hardware runtime formal verification for secure purpose
— An attempt to apply symbolic execution in hardware security

* Future work
— Apply the approach into large scale hardware system
— SAT solver optimization
— Automated tool development

Questions?

Introduction

— Threat Model

— Related Methods
— Background

Runtime Proof-Carrying Hardware (PCH)
— Runtime PCH Framework
— Runtime Proof-Carrying

Trusted
Integrator

0

0lY

— Verifier Design
Case Study and Results

Conclusions and Future Work

0

Trusted

Integrator

Segn/\
CNFlan/\CNFsegn

Req ‘ CNF
|

emmmmmad DPLL SAT Solver |

—
=

Trusted
>-
Circuits

.»

Thanks!

Xiaolong Guo, guoxiaolong@ufl.edu

securityin
Silicon Lah [S¢

F"‘i

e
M;ﬁ

