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Side-channel	attack	and	its	evaluation
• Side-channel	attack	is	powerful
• Power	analysis,	time	analysis,	electromagnetic	analysis	etc.
• Practical	security	threat	to	cryptographic	devices

• SCA	follows	a	divide-and-conquer	approach
• Key	is	divided	into	sub-keys	to	be	recovered	independently
• When	all	sub-keys	are	successfully	recovered,		the	whole	key	is	
recovered	as	well	
• Successful	recovery	means	correct	sub-key	has	“highest	score”	
among	all	key	candidates	

• Security	evaluation	of	cryptographic	implementations
• Data	complexity	(1k	~ 5M	traces	for	key	recovery)
• Computational	complexity	(Usually	not	very	high)
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How	to	define	a	successful	attack
• Full-key	recovery	
• Each	sub-key	has	the	highest	score	
• Useful	for	practical	attackers
• Focus	of	this	paper

• Sub-key	recovery
• Recover	some	sub-keys
• Useful	for	security	evaluation	

• Global	Success	Rate	>	80%	used	in	DPA	contest	v2

• Existence	of	sensitive	leakage
• Detection	of	leakage	of	sensitive	information

• T-test	etc.
• Useful	for	strict	security	evaluation,	countermeasure	proposal	
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Trade-off	between	data	and	
computations
• In	full-key	recovery,	attackers	can	always	use	plaintext-ciphertext
test to	verify	the	correctness	of	a	key

• E.g,	verify	240 most	likely	key	candidates	to	find	the	correct	key
• More	computation	to	trade	for	less	data	complexity!

• How	to	enumerate	the	most	likely	keys	from	sub-key	recovery	
results?	
• to	minimize	# of	test	trails.

• How	to	evaluate	the	rank	of	a	certain	key	candidate?	
• to	quickly	understand	required #	of	test	trails. 6
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Key	Enumeration	Algorithm	(KEA)	and	
Key	Rank	Estimation	Algorithm	(REA)
• Key	Enumeration	Algorithm
• Enumerate	key	candidates	in	decreasing	order	of	likelihood
• Useful	for	practical	attack

• Key	Rank	Estimation	Algorithm
• Estimate	rank	of	a	given	key
• Useful	for	known-key	evaluation	

• Rank	can	beyond	the	KEA’s	computational	power
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Existing	Key	RE	Algorithms
• First	rank	estimation	algorithm	proposed	in	Eurocrypt 2013

• transfers	search	problem	to	a	multidimensional	problem
• 10	bits	of	accuracy

• In	2015,	Bernstein	et	al.	introduced	two	better	RE	algorithms
• First	Alg.	add	post	processing	to	increase	accuracy	from	10	bits	to	5	bits	
• Second	Alg.	ranks	the	keys	based	on	polynomial	problem,	flexible	
accuracy	at	the	expense	of	run	time.	

• In	2015,	Glowacz et	al.	 proposed	a	rank	estimation	algorithm	
• Based	on	convolution	of	histograms.	
• Bounds	with	less	than	1	bit	of	tightness	within	seconds	of	computation
• Scales	to	larger	key	sizes

• In	2015,	Martin	et	al.	mapped	the	rank	estimation	problem	
• to	a	multi-dimensional	knapsack	problem

• All	of	them	focused	on	merging	independent	key	lists
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Motivation	of	this	work
• Key	is	divided	into	sub-keys	to	be	recovered	independently	
• But	key	can	be	divided	in	different	formats,	e.g.	there	are	
two	well-known	types	of	SCAs
• Key	Recovery	Attacks:

• Target:	𝑘", 𝑘$, … , 𝑘$&
• Based	on	leakage	model	from	small	component	(e.g.	S-box)
• Differential	Power	Analysis,	Correlation	Power	Analysis,	Mutual	Information	
Analysis,	etc

• Key Difference	Recovery	Attack
• Target	:	𝑘",$ = 𝑘" ⊕ 𝑘$, 𝑘",), … , 𝑘",$&, 𝑘$,),… , 𝑘$,$& , … , 𝑘$*,$&
• Based	on	similarity	of	leakage	from	two	small	components	
• Collision	attacks,	Correlation-Enhanced	Collision	Attacks		
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Key-recovery	attack Key-difference	recovery	attack
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Motivation	
• Why	to	do	so?
• Intuitively,	more	score	lists	
should	lead	to	better	attack	
result!
• Different	attacks	use	
different	information	to	
recover	key
• Leakage	model
• Collision	model	

• We	want	to	
• Propose	a	key	RE	algorithm	
for	dependent	key	lists	(DK-
REA),
• Verify	whether	using	more	
key	lists	is	helpful
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Straightforward	solution	cannot	work
• DK-KRA	is	not	trivial	due	to	dependency	
• Many	meaningless	combinations	don’t	satisfy	dependency	
• E.g.	𝑘" = 0, 𝑘$ = 1, 𝑘",$ = 2	is	invalid	since	𝑘0 ⊕ 𝑘1 ≠ 𝑘",$ 	
• Actually,	most	of	combinations	are	invalid	consider	16	key	bytes	
and	15	key	byte	differences	
• Straightforward	combination	is	impracticable

• A	new	method	to	combine	dependent	key	lists	
• Deal	with	dependency	before	combination

14



Our	Solution:	divide	and	conquer
• Take	𝑘", 𝑘$ and	𝑘",$	as	an	
example,	there	is	an	XOR	
relationship	between	
them	as	𝑘" ⊕ 𝑘$ = 𝑘",$	
• When	a	subkey i.e.	𝑘" is	
fixed,	there	is	a	one-one	
correspondence	between	
𝑘$ and	𝑘",$	
• We	combine	key	lists	of	𝑘$
and	𝑘",$		to	obtain	a	new	
list	as	𝑘$+𝑘",$	,	which	is	
independent	from	
𝑘), 𝑘6, … , k$&

15

0.13
0.34

…
0.24

!"

!" = 0
0.14
0.22

…
0.45

!%
0.34
0.27

…
0.15

!",%
0.48
0.49

…
0.60

!% + !",%
+
+

+
…

!" = 1
0.14
0.22

…
0.45

!%
0.27
0.34

…
0.23

!",%
0.41
0.56

…
0.67

!% + !",%
+
+

+
…

…

!" = 255
0.14
0.22

…
0.45

!%
0.15
0.23

…
0.34

!",%
0.41
0.56

…
0.67

!% + !",%
+
+

+
…

… … …



Our	Solution:	divide	and	conquer
• Key	RE	for	dependent	lists	is	reduced	to	28=256	key	RE	
problems	for	independent	key	lists
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Adding	1	subkey-difference	score	list Adding	15	subkey-difference	score	lists

Our	General	Solution
• Fix	1	subkey 𝑘1,	there	is	correspondence	between	𝑘2 and	𝑘1,2, 𝑗 ∈
{0,1, … , 15}.	
• Fix	1	key	byte	allows	to	add	up	to	15	subkey-differece score	lists
• When	𝑘1 = 𝑚, 𝑚 ∈ 0,1, … , 255 , we	combine	(𝑘2, 𝑘1,2) = 𝑠(𝑘2) +
𝑠(𝑘1,2=𝑘2⨁𝑚),	𝑠(𝑘2) represents	the	score	of	𝑘2
• 𝑘B + 𝑘1,B and	𝑘C + 𝑘1,C are	independent	from	each	other	as	well
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Adding	16	subkey-difference	score	lists Adding	29	subkey-difference	score	lists

Our	General	Solution
• If	we	want	to	add	more	than	15	dependent	score	lists,	fix	1	
subkey is	not	enough.	
• We	can	fix	2	subkeys,	such	as	𝑘", 𝑘$,	and	add	up	to	29	lists
• 15+14=29	lists
• There	is	a	correspondence	between	𝑘", 𝑘1 and	𝑘",1 and	𝑘$,1.
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Limitations	of	DK-REA

• Computational	overhead	
• Adding	N	subkey difference	lists
• If	1<N<16,	computational	complexity	is	increased	by	a	
factor	of	2-
• If	15<N<30,	computational	complexity	is	increased	by	a	
factor	of	2$D

• Added	dependent	score	lists	are	fixed
• Dependent	score	lists	that	can	be	added	cannot	be	freely	
chosen
• Depends	on	the	selected	fixed	subkey
• e.g.,	when	we	select	𝑘",	15	dependent	score	lists	that	
can	be	added	are	𝑘",$, 𝑘",),	𝑘",6,…, 𝑘",$& .
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Experimental	Setup:	simulated	leakage
• Target:	AES-128
• 16	S-boxes	in	first	AES	round
• Serial	implementation	
• Leakage	model:	Hamming	weight	of	the	S-box	output with	noise	

• We	simulated	two	attacks	
• Correlation	Power	Analysis	à key	recovery	
• Correlation	Enhanced	Collision	Attack	à key	difference	recovery

• Two	types	of	noises	in	the	leakage	measurement
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Experimental	Setup:	REA	with
independent score lists
• DK-REA	uses	a	REA	for	independent	score	lists.	All	previous	REA	
algorithms	can	be	used	here.
• In	this	paper,	we	use	the	key	REA	based	on	histograms	for	its	simplicity	
and	efficiency.
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Experimental	Setup:	repetitions
• We	performed	
• 100	times	experiments	for	adding	0	to	15	subkey-difference	
score	lists	
• 10	times	experiments	for	adding	0	to	29	subkey-difference	
score	lists.	
• Taking	into	account	the	constraints	of	time	and	space,	we	do	
not	consider	the	key	rank	estimation	using	more	than	29	
subkey-difference	score	lists
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DK-REA	up	to	15	lists	(100+	traces)
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When	adding	more	
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decrease	in	general
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Each	curve	represents	the	
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DK-REA	up	to	15	lists	(<100	Traces)
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When	adding	more	score	
lists,	the	rank	does	not	
change	in	general



DK-REA	up	to	29	lists
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Best	case:	246à218
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first	and	increases	in	end
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Conclusions	

• In	this	paper,	we	proposed	DK-REA
• Able	to	estimate	key	rank	for	dependent	score	lists
• Generally	the	attack	result	is	improved	with	more	lists

• Key	rank	reduced	from	246 to	218 in	the	best	case

• Improvement	also	has	limitations
• When	data	is	not	enough	
• When	too	many	dependent	lists	are	added

• DK-REA	is
• A	new	tool	in	SCA	to	explore	the	possibility	of	merging	various	
attack	results	for	a	more	accurate	security	evaluation	result
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Future	work

•More	experiments	to	verify	the	effects	of	DK-KEA
• With	practical	power	traces
• With	different	structures	

• e.g.	serial	and	parallel	implementations

• With	different	leakage	models
• e.g.	two	attacks	with	large	difference	in	key	recovery	efficiency	

• DK-KEA	for	more	complex	dependency	relations	
such	as	algebraic	side-channel	attack
• Reduce	overhead!
• Rank	Estimation	Alg.	à Key	Enumeration	Alg.	
• Our	work	to	be	presented	at	CARDIS	2017	in	this	Nov.	
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Thanks	very	much	for	
your	attentions!

Questions?
li.yang@nuaa.edu.cn
li.yangheu@gmail.com
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